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Brain-Controlled Augmented Hearing for Spatially Moving
Conversations in Multi-Talker Environments

Vishal Choudhari, Cong Han, Stephan Bickel, Ashesh D. Mehta, Catherine Schevon,
Guy M. McKhann, and Nima Mesgarani*

Focusing on a specific conversation amidst multiple interfering talkers is
challenging, especially for those with hearing loss. Brain-controlled assistive
hearing devices aim to alleviate this problem by enhancing the attended
speech based on the listener’s neural signals using auditory attention
decoding (AAD). Departing from conventional AAD studies that relied on
oversimplified scenarios with stationary talkers, a realistic AAD task that
involves multiple talkers taking turns as they continuously move in space in
background noise is presented. Invasive electroencephalography (iEEG) data
are collected from three neurosurgical patients as they focused on one of the
two moving conversations. An enhanced brain-controlled assistive hearing
system that combines AAD and a binaural speaker-independent speech
separation model is presented. The separation model unmixes talkers while
preserving their spatial location and provides talker trajectories to the neural
decoder to improve AAD accuracy. Subjective and objective evaluations show
that the proposed system enhances speech intelligibility and facilitates
conversation tracking while maintaining spatial cues and voice quality in
challenging acoustic environments. This research demonstrates the potential
of this approach in real-world scenarios and marks a significant step toward
developing assistive hearing technologies that adapt to the intricate dynamics
of everyday auditory experiences.

Takeaways

• Developed a brain-controlled hearing algorithm for dynamic
multitalker settings with moving conversations, closely mim-
icking real-world listening environments
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• Introduced a binaural speech separation
model that isolates speech from moving
talkers while preserving spatial cues, en-
hancing auditory perception and atten-
tion decoding

• Proposed system improves speech intel-
ligibility and reduces listening effort in
realistic acoustic scenes

1. Introduction

Speech communication in multi-talker en-
vironments is challenging, particularly for
the hearing impaired.[1] Modern hearing
aids, though proficient at suppressing gen-
eral background noises,[2,3] fall short in a
critical aspect: they cannot selectively en-
hance the attended talker’s speech without
first knowing which talker is the target.[4]

This limitation underscores the need for a
brain-controlled approach, in which the lis-
tener’s neural responses are used to decode
and enhance the talker to whom attention
is directed,[5] a technique known as audi-
tory attention decoding (AAD).[6] In paral-
lel, the field of automatic speech separation
has seen significant progress in the recent

years.[7–9] Speech separation aims to isolate individual talkers
from a mixture (captured by one or more microphones). Audi-
tory attention decoding can be combined with automatic speech
separation to enable a brain-controlled hearing device[6,10–13]

by isolating and amplifying the speech of the attended talker,
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therefore mitigating the challenges posed by multi-talker
environments.

Past studies have established the feasibility of decoding audi-
tory attention from both invasive[5,6,10,11] and non-invasive[13–16]

neural recordings. Despite these advancements, existing studies
predominantly employ overly simplistic acoustic scenes that do
not mimic the real world scenarios.[6,10–14,17] These experimen-
tal setups have been limited to stationary talkers without back-
ground noise, and primarily focus on distinguishing between
two concurrent talkers. Many commonly used datasets[16,17] use
such a simplistic setting. This lack of realism in experimental
design is a significant barrier to the generalization of these tech-
nologies to everyday life scenarios. Real-world listening involves
dynamic conversation involving multiple talkers, often engaged
in turn-taking while moving in space, all amidst varying back-
ground noises. As these elements have not been incorporated in
prior AAD research, our study aims to bridge this gap by simu-
lating a more realistic experimental paradigm and proposing a
framework to deal with such challenging listening scenes, there-
fore advancing the field of AAD toward practical applications.

Another important factor that past research has often over-
looked is the listeners’ desire to track moving talkers in space.
This aspect is crucial for natural listening[18] and, thus, for the
effectiveness of brain-controlled hearing devices. A successful
brain-controlled hearing device must separate speech streams as
they move in space while preserving the perceived spatial loca-
tion of each talker.[19] Previous studies of AAD have been based
on decoding only the spectro-temporal features of speech.[16,17,19]

However, recent scientific studies have shown that the human au-
ditory cortex also encodes the location of the attended talker[20–22]

which can potentially lead to the ability to decode the spatial tra-
jectory of attended talkers. Our study takes a crucial step by inves-
tigating whether adding talker trajectories can improve the AAD
performance.

Another persistent challenge in AAD model fitting and evalu-
ation is the difficulty in accurately determining the attentional fo-
cus of the listener, especially with high temporal resolution. Pre-
vious methods often assume that subjects correctly followed the
task instructions and focused on the to-be-attended (cued) talker
throughout the experiment, overlooking the possibility of inad-
vertent attention shifts.[23] This assumption can lead to mislabel-
ing in data and biasing the performance evaluation of AAD algo-
rithms. In contrast to previous research, our study addresses this
issue by integrating a behavior measure into our experimental de-
sign to ascertain the ongoing focus of the subject more precisely,
thereby enhancing the reliability of our data and the validity of
our evaluation metrics.

In this work, we present a comprehensive and novel approach
to AAD that uses complex, dynamic stimuli that more closely
resemble real-world acoustic environments. Specifically, we use
two concurrent conversations that feature moving talkers and
natural background noise, alongside speaker turn-taking among
attended and unattended conversations. Furthermore, we intro-
duce a novel task for determining the ground truth labels in
attention-focused conversation by requiring the subject to de-
tect deliberately placed repeated words (1-back task).[24,25] Lastly,
we propose a refined brain-controlled hearing system equipped
with a real-time, speaker-independent binaural speech separa-
tion model[6,10] that preserves the spatial location of the talkers

and outputs real-time speaker trajectories that are used to in-
crease the decoding accuracy of the attended talker. We demon-
strate that the system improves speech intelligibility and con-
versation tracking and preserves the spatial characteristics and
voice quality essential for realistic and immersive auditory expe-
riences. This represents a significant advancement toward brain-
controlled hearing devices in real-world listening environments.

2. Results

2.1. Subjects and Neural Data

Neural responses from three patients undergoing epilepsy treat-
ment were collected as they performed the task with intracranial
electroencephalography (iEEG). Two patients (Subjects 1 and
2) had stereo-electroencephalography (sEEG) depth as well as
subdural electrocorticography (ECoG) grid electrodes implanted
over the left hemispheres of their brains. The other patient
(Subject 3) only had sEEG depth electrodes implanted over
their left-brain hemisphere. All subjects had electrode coverage
over their left temporal lobe, spanning the auditory cortex. The
neural data was processed to extract the envelope of the high
gamma band (70–150 Hz), which was used for the rest of the
analysis. Speech-responsive electrodes were determined using
t-tests on neural data samples collected during speech v/s silence
(see Experimental Section). S1, S2 and S3 had 17, 34 and 42
speech-responsive electrodes respectively as shown in Figure S1
(Supporting Information).

2.2. Experiment Design

The experiment had a total of 28 multi-talker trials, with the av-
erage duration of 44.2 s (standard deviation = 2.0 s) each. As
shown in Figure 1a, the trials consisted of two concurrent and
independent conversations that were spatially separated and con-
tinuously moving in the frontal half of the horizontal plane of
the subject (azimuthal range of −90 to +90 degrees). The dis-
tances of these conversations from the subject (i.e., their loud-
ness) were equal and constant throughout the experiment. Both
conversations were of equal power (RMS). Talkers were all native
American English speakers. Diotic background noise[26,27] (either
“pedestrian” or “speech babble”) was also mixed along with the
conversations at power either 9 or 12 dB below the power of a
conversation stream.

Different talkers took turns in these conversations. As shown
in Figure 1b, in the to-be-attended conversation, a talker switch
took place at ≈50% trial time mark whereas for the to-be-
unattended conversation, two talker switches took place, one
at ≈25% trial time mark and the other nearly at the 75% trial
time mark. Talkers in each conversation occasionally repeated
words which were deliberately inserted in both the conversation
streams (1-back detection task). The selection of the repeated
words was done strategically to ensure that the repeats across the
two conversations were non-overlapping in time (see Figure 1,
Methods and video demo in supporting information). A repeated
word was simulated by simply replicating the talker’s voice wave-
form associated with the word. The average time interval between
the onsets of two repeated words in a conversation was 7.0 s
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Figure 1. Experiment design. a) Every trial consisted of two concurrent conversations moving independently in the front hemifield of the subject. Each
conversation had two distinct talkers taking turns. b) Talkers in each conversation repeated a word at random intervals (1-back detection task), as high-
lighted in pink. The cued (to-be-attended) conversation had a talker switch at ≈50% trial time mark whereas the uncued (to-be-unattended) conversation
had two talker switches, at ≈25% and 75% trial time marks.

(standard deviation = 1.0 s). The assignment of male and female
talkers to various segments of the conversations was counterbal-
anced across trials to ensure equal durations of concurrent con-
versations with the same and different genders.

The subjects were instructed to follow (attend to) the conver-
sation that started first and press a push button upon hearing a
repeated word in the followed conversation. The uncued (to-be-
unattended) conversation started 3 seconds after the onset of the
cued (to-be-attended) conversation. The trials were spatialized us-
ing head-related transfer functions (HRTFs) and delivered to the
subjects via earphones.

2.3. System Proposal

Brain-controlled hearing devices need to combine a speech sep-
aration model along with auditory attention decoding to deter-
mine and enhance the attended talker. Performing AAD requires
having access to individual speech streams and trajectories of
every talker in the acoustic scene with which neural represen-
tations can be compared to determine the attended talker. Our
proposed framework for a binaural brain-controlled hearing de-
vice assumes that there are two single-channel microphones, one
on the left ear and the other on the right, as shown in Figure 2a.
These microphones capture the left and right components of the
sounds arriving at the ears of the wearer. The system frame-
work, shown in Figure 2b, makes use of a deep learning-based
speaker-independent binaural speech separation model that sep-
arates a binaural mixture of speech streams of two moving talk-
ers (recorded by the binaural microphones) into their individual
speech streams while also preserving their spatial cues. As spatial
cues are preserved in the separated speech streams of the talkers,
the model is also able to estimate the trajectories of the moving

talkers in the acoustic scene. Auditory attention decoding is en-
abled by performing canonical correlation analysis (CCA) which
uses the wearer’s neural data and the talkers’ separated speech
and estimated trajectory streams to determine and enhance the
attended talker by suppressing the unattended talker. With CCA,
the neural responses and the attended talker’s speech and trajec-
tory streams are both linearly transformed to maximize informa-
tion correlation.[28]

2.4. Speaker-Independent Binaural Speech Separation

In this section, we present an automatic speaker-independent
speech separation model that separates moving sound sources
and preserves spatial cues for all directional sources, enabling lis-
teners to accurately locate each of the moving sources in space.
The proposed model, as shown in Figure 2c comprises of two
main modules, namely the binaural separation module and the
binaural post-enhancement module. Both modules adopt TasNet
which has demonstrated exceptional performance in separating
audio sources.[8,29,30] Furthermore, the causal configuration en-
ables low-latency processing, making it well-suited for real-time
applications.

The binaural separation module takes binaural mixed signals
as input and simultaneously separates speech for both left and
right channels. Specifically, two linear encoders transform the
two channels of mixed signals yL, yR ∈ ℝT into 2-D representa-
tions EL, ER ∈ ℝN×H, respectively, where T represents the wave-
form length, N represents the number of encoder bases, and H
represents the number of time frames. To explicitly exploit spa-
tial information, we concatenated the encoder outputs and inter-
channel phase differences (IPDs) and inter-channel level differ-
ences (ILDs) between yL and yR, forming spectro-temporal and
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Figure 2. Proposed framework for a binaural brain-controlled hearing device. a) The framework requires two microphones, one each on both the left
and the right ear. The microphones separately capture the left and the right mixtures of sound sources arriving at the ears. b) The speaker separation
works with these microphone recordings to binaurally separate the speech streams while also estimating the trajectories of the talkers. These outputs
are used in combination with the wearer’s neural data to decode and enhance the attended talker. c) The binaural speaker separation model consists of
an initial separation module whose outputs are further improved by a post-enhancement module.

spatial-temporal features (as detailed in the Experimental Sec-
tion). We then pass this feature through a series of temporal
convolutional network (TCN) blocks to estimate multiplicative
masks, ML, MR ∈ ℝC×N×H, where C is the number of speakers.
In this study, C is prefixed to be two. These multiplicative masks
are then applied to EL and ER, respectively, and a linear decoder
transforms the masked representations back to the waveform
of individual speaker, {sL

i , sR
i }C

i = 1. The speaker-independent bin-
aural speech separation module was trained using permutation
invariant training.[31] Additionally, we imposed the constraint
that the speaker order is the same for both channels, allowing
the left- and right-channel signals of each individual speaker to
be paired directly. The average signal-to-noise ratio (SNR) im-
provement of the separated speech over the raw mixture was
14.05 ± 4.79 dB.

The binaural post-enhancement module aims to enhance per-
formance in noisy and reverberant environments because post
processing stages have shown effectiveness in improving the
signal quality.[32] The module takes each pair of the separated
stereo sounds (e.g., sL

i and sR
i ) and the mixed signals (yL and yR)

as input. Similarly, all the encoder outputs are passed through
the TCN blocks to estimate multiplicative masks for separating

sources. Unlike the speech separation module that only applies
multiplicative masks, which is equivalent to spectral filtering, the
speech enhancement module performs both multiplication and
summation, equivalent to both spectral and spatial filtering. This
is similar to multichannel Wiener filtering.[33] Because the input
stereo sound (sL

i and sR
i ) contains both spectral and spatial infor-

mation of the speaker i, the enhancement module essentially per-
forms informed speaker extraction without the need for permu-
tation invariant training. The average SNR improvement of the
enhanced speech over the raw mixture was 16.77 ± 4.92 dB.

The key ingredient of the training is using the signal-to-noise
ratio (SNR) as the objective function for both the speech sepa-

ration and enhancement modules. SNR (x, x̂) = 10log10

( ‖x‖2
2

‖x−x̂‖2
2

)
,

where x and ‚x are the ground truth and estimated waveform,
respectively. Because SNR is sensitive to both time shift and
power scale of the estimated waveform, it can force the interau-
ral level difference and interaural time difference to be preserved
in the estimated waveform. Moreover, we performed utterance-
level training on a moving speaker dataset, which encourages the
model to leverage spectral and spatial features of speakers in a
large context and forces the model to track speakers within the
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utterance without the need for explicit tracking modules.[19] This
approach enables the model to handle moving sources effectively.

We also trained a speaker localizer module using a similar ar-
chitecture to the enhancement module. The module performs
classification of the direction of arrival (DOA) every 80 millisec-
onds. So, the localizer module estimates a moving trajectory for
each moving source which can be utilized to improve the accu-
racy of attentional decoding. The average DOA error of the esti-
mated trajectories was 4.20 ± 5.76 degrees (the chance level is
60 degrees).

2.5. Behavioral Data Analysis

The push button responses of subjects to repeated words in the
conversation being followed help in determining to which con-
versation a subject was attending. A repeated word in a con-
versation was considered as correctly detected only if a button
press was captured within two seconds of its onset. As shown
in Figure S2 (Supporting Information), all subjects tracked more
than 65% of the repeated words in the cued (to-be-attended) con-
versation. We assign these as hits. However, we see that sub-
jects also tracked a non-zero fraction of repeated words in the
uncued (to-be-unattended) conversation (false alarms) indicating
that there might have been occasions when the subjects were at-
tending to the uncued (to-be-unattended) conversation. We com-
bined the hit rate and false alarm rate for each subject to gener-
ate a sensitivity index (d’) inspired by signal detection theory[24,34]

(SDT). Sensitivity index for each subject was calculated as: d’ =
z(False Alarm Rate) – z(Hit Rate), where z(x) is the z-score cor-
responding to the right-tail p-value of x.[34] Subjects were ranked
based on their sensitivity indices (S1: 2.8, S2: 2.3, S3: 1.9).

2.6. Auditory Attention Decoding

In order to decode the attended talker, neural signals were com-
pared with speech spectrograms and trajectories of talkers us-
ing canonical correlation analysis28 (CCA) (see Experimental Sec-
tion). For certain trials where it was evident that the subject was
following the uncued conversation (greater than or equal to two
repeated words detected in the uncued stream), the “attend” and
“unattend” labels were swapped for the conversations in that por-
tion. Subject-wise CCA models were trained, and their perfor-
mance was evaluated using leave-one-trial-out cross validation,
i.e., training on N – 1 trials and testing on the windows from
the Nth trial. During training, the CCA models simultaneously
learn forward filters on attended talker’s clean speech spectro-
gram and trajectory and backward filters on the neural data such
that upon projection with these filters, the neural data and the
attended talker stimuli would be maximally correlated. During
testing, these learnt filters are applied to the neural data as well
as to every talker’s speech spectrogram and trajectory. The talker
which yields the highest correlation score (based on voting of the
top three canonical correlations) was determined as the attended
talker. We chose a receptive field of 500 ms for neural data and
200 ms for stimuli spectrograms and trajectories (see Experimen-
tal Section). These receptive field durations were chosen to max-
imize the correlation between continuous speech stimuli and its

evoked neural response, as previous studies found that neural re-
sponses to speech can occur as late as 500 ms.[35–37] The starting
sample of the receptive field windows were aligned in time for
both neural data and stimuli.

We evaluated auditory attention decoding accuracies for all
subjects for a range of window sizes from 0.5 s to 32 s for the
following two stimuli versions:

1) Clean Stimuli: Using the clean (before mixing) ground truth
speech spectrograms and trajectories of individual talkers in
the acoustic scene.

2) Automatically Separated Stimuli: Using the speech spectro-
grams and estimated trajectories of talkers yielded by the bin-
aural speech separation model.

Figure 3a shows the attended talker decoding accuracies aver-
aged across subjects as a function of window size for both clean
and separated versions after correcting for behavior. For both ver-
sions, the attended talker decoding accuracies increase as a func-
tion of window size. This is expected since with larger window
sizes, more information is available to determine the attended
talker. Extended window durations help overcome the combined
limitations of neural noise, suboptimal brain coverage and lin-
ear decoding techniques. Stimuli version had a very small effect
on the AAD accuracies across subjects and window sizes (two-
sided Wilcoxon signed-rank test, z = 1.50, p-val = 0.13). This in-
dicates that the AAD performance with automatically separated
stimuli is as good as the performance with original clean stim-
uli (Figure 3a), confirming the efficacy of the proposed speaker-
independent speech separation module.

We studied the improvement in AAD performance when
talker trajectories are included in addition to talker spectrograms.
For this comparison, we trained and tested CCA models (post be-
havior correction) with only talker spectrograms without trajec-
tories. As shown in Figure 3b, we found that trial-wise AAD per-
formance improved when talker trajectories were also incorpo-
rated in addition to talker spectrograms for both clean (two-sided
paired t-test, t = 3.2235, df = 80, p-val = 0.002, 95% CI: 0.7534 to
3.1845) and automatically separated (two-sided paired t-test, t =
2.6316, df = 80, p-val = 0.010, 95% CI: 0.3470 to 2.4995) versions
of the stimuli. The mean improvement observed was 1.97% for
the clean version (from 87.61% to 89.58%) and 1.41% for the au-
tomatically separated version (from 86.86% to 88.27%).

Lack of having a behavioral measure and not correcting for the
same can lead to underreporting of AAD performance. To study
this, we also trained a set of CCA models assuming that the sub-
jects always paid attention to the cued (to-be-attended) conversa-
tion. Figure 4a compares the AAD performance for clean stim-
uli when correcting and not correcting for behavior. Not correct-
ing for behavior significantly hurts AAD performance (two-sided
Wilcoxon signed-rank test, signed-rank = 0, p-val < 0.001). This
is also true when evaluating with the automatically separated ver-
sion of the stimuli (two-sided Wilcoxon signed-rank test, signed-
rank = 0, p-val < 0.001). The mean improvement observed across
all window sizes was 2.26% for the clean version (from 84.28% to
86.54%) and 2.82% for the automatically separated version (from
83.17% to 85.98%).

Next, for the models trained without correcting for behav-
ior, we examined whether the behavioral performance on the
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Figure 3. Evaluating auditory attention decoding (AAD) performance and the contribution of talker trajectory. a) AAD accuracies averaged across subjects
as a function of window size. The decoding accuracies are comparable between the clean and separated versions (two-sided Wilcoxon signed-rank test,
z = 1.50, p-val = 0.13). Error bars indicate the standard error of mean. b) Scatter plots comparing trial-wise AAD accuracies for a window size of 4 s when
using only spectrogram versus spectrogram + trajectory. Each point represents a trial. AAD accuracies improved significantly when talker trajectories
were also incorporated in addition to their speech spectrograms for both clean (two-sided paired t-test, t = 3.2235, df = 80, p-val = 0.002, 95% CI: 0.7534
to 3.1845) and separated (two-sided paired t-test, t = 2.6316, df = 80, p-val = 0.010, 95% CI: 0.3470 to 2.4995) versions.

Figure 4. Correcting for behavior prevents underreporting AAD performance. a) A separate set of models were trained without correcting for behavior.
The decoding accuracies are plotted for the clean version of speech for both with and without behavior correction. Not correcting for behavior can lead
to significant underreporting of AAD performance (two-sided Wilcoxon signed-rank test, signed-rank = 0, p-val < 0.001) b) For models trained without
correcting for behavior, trial-wise behavioral performance and AAD accuracies are significantly correlated (Pearson’s r = 0.639, p-val < 0.001). c) An
example trial from one of the subjects who shifts attention from the cued conversation (Conv. 1) to the uncued conversation (Conv. 2) in the middle of
the trial. Repeated words in the conversation streams are shaded in pink. Button press responses to the repeated words are shown in green (red) for
the cued (uncued) conversation. The last plot shows the first canonical correlation for both the conversation streams obtained by continuously sliding
a 4 s window. Behavior is well correlated with the canonical correlations.

Adv. Sci. 2024, 11, 2401379 2401379 (6 of 14) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Figure 5. The proposed system seamlessly tracks turn-takings. This is facilitated by the speaker separation module which places talkers in a conversation
on the same output channel by relying on location and talker continuity cues. a) Attended conversation is highlighted with a pink shade. Correlations
shown are the average of the top three canonical correlations for separated version of the stimuli. b) Attention switch from one conversation to another
can be simulated by swapping the output channels of the binaural separation system. c) Channel preference dynamics after simulated attention switch
for a decoding window size of 4 s. d) Transition times as a function of decoding window size. No significant differences were observed between the clean
and separated versions (two-sided Wilcoxon signed-rank test, signed-rank = 17, p-val = 0.70). Error bars in all plots indicate the standard error of mean.

repeated word detection task could explain the AAD performance
on a trial-by-trial basis. We first computed the proportion of re-
peated words detected in the cued conversation (hit rate) for each
trial and for each subject. We also computed corresponding trial-
wise AAD accuracies for a window size of 4 s. As shown in
Figure 4b, we found that hit rate on the repeated word detec-
tion task was significantly correlated with the trial-wise AAD ac-
curacies (Pearson’s r = 0.639, p-val < 0.001). Figure 4c shows
an example trial from one of the subjects who, based on be-
havioral responses, was initially attending to the cued (to-be-
attended) conversation and then later attends to the uncued
(to-be-unattended) conversation after the conversations cross in
space. The canonical correlations mapping the neural data with
both the cued and uncued stimuli also capture this shift of at-
tention from one conversation to the other. Thus, the repeated
word detection task helps explain AAD performance on a trial-by-
trial basis.

2.7. System Dynamics During Talker Transitions

Turn-takings during conversations create talker switches in the
attended conversation. For good user experience, it is important
that the system tracks the talker switch and seamlessly enhances
the new attended talker. Our experiment paradigm, inspired by
real-world settings, had asynchronous talker switches in both to-
be-attended and to-be-unattended conversations. The new talker
continued at the same location as the previous talker in the con-

versation. The speaker separation model was able to put talkers
of a conversation on the same output channel using location and
talker continuity. As a result, the system was able to seamlessly
track turn-takings in conversations, as shown in Figure 5a.

In some cases, the wearer of the hearing device might switch
attention from a conversation at a particular location to another
conversation at a different location. To study how our system re-
sponds in such cases, we artificially swapped the outputs of the
binaural speech separation system at the point of talker switch in
the cued conversation, as shown in Figure 5b. Since we combine
the results of the top three canonical correlations based on voting
to determine the attended talker or channel, we define a metric,
channel preference index (CPI), i.e.,

CPI =
# of votes favoring Channel 1

3
− 0.5 (1)

Thus, a positive CPI would indicate a preference to Channel 1
whereas a negative CPI would indicate a preference to Channel
2. In Figure 5c, we show the CPI averaged across trials for one
of the subjects (S3) when attention switch is simulated. We
define the transition time as the time point where the average
CPI crosses 0. Figure 5d shows the transition times (averaged
across subjects) as a function of window size for both clean and
separated versions. No significant difference was found in the
transition times across subjects and window sizes between the
clean and separated versions (two-sided Wilcoxon signed-rank
test, signed-rank = 17, p-val = 0.70).
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2.8. Evaluation of System Performance

2.8.1. Part A: Subjective

To evaluate the performance of the proposed system, an online
Amazon MTurk experiment was conducted with 24 native speak-
ers of American English with self-reported normal hearing. The
participants listened to simulated output of the proposed system
using the neural signatures obtained by concatenating the chan-
nels from all the three subjects, for a total of 15 trials, five for each
of the following conditions, in a blind fashion:

1) System Off: The raw mixture stimuli that was played to the
subjects from whom neural data was recorded.

2) System On (Separated): Mixture in which the attended talker,
as determined by the neural signatures, was enhanced using
the output of the binaural speaker-separation model.

3) System On (Clean): Mixture in which the attended talker was
enhanced using clean ground truth speech.

Enhanced mixtures were generated by suppressing the un-
attended talker and the background noise in the mixture by the
same scale factor such that the resulting power difference be-
tween the attended and the unattended talker was 9 dB (see Ex-
perimental Section). Like the iEEG participants, the MTurk par-
ticipants were also instructed to follow the cued conversation and
press space bar on their keyboards upon hearing the repeated
words in the conversation being followed. After each trial, the
participants were asked to rate the difficulty of following the cued
conversation on a scale from 1 (very difficult) to 5 (very easy) and
the quality of voices in the conversation on a scale from 1 (bad)
to 5 (excellent). To also test the intelligibility of the conversations,
the participants were also asked to respond to a multiple-choice
question based on the content of the cued conversation after each
trial. A short localization task was also included at the end of
each trial to determine if the attended talker can be localized post
enhancement. In the localization task, participants indicated the
perceived location of the attended talker, choosing between five
spatial regions of left, front left, center, front right, and right.

Figure 6 summarizes the results. As shown in Figure 6a, un-
der both the “system on” conditions, the repeated word detection
accuracy in the cued conversation is enhanced when compared to
the “system off” condition (two-sided paired t-test, p-val < 0.001),
whereas for the uncued conversation (Figure 6b), the detection
accuracy is reduced (two-sided paired t-test, p-val < 0.01). This
means that the system helps track the cued conversation and pre-
vents unintentional tracking of the uncued conversation. We also
find that intelligibility of the cued conversation is significantly en-
hanced under the “system on” conditions (Figure 6c, two-sided
paired t-test, p-val< 0.05). No significant differences are observed
between the clean and separated versions of the “system on” con-
dition. Ease of attending to the cued conversation increases from
“system off” condition to “system on with separated speech” con-
dition (two-sided paired t-test, p-val < 0.0001) to “system on with
clean speech” condition (two-sided paired t-test, p-val < 0.01), as
shown in Figure 6d. Surprisingly, no differences in voice quality
of the talkers in the cued conversation were observed between the
“system off” and the “system on with separated speech” condition
(Figure 6f). However, participants rated the voice quality in the

“system off with clean speech” condition higher than the other
two (two-sided paired t-test, p-val < 0.05). These results indicate
that a scope for improvement exists for the speaker-independent
binaural speech separation model and its upper bounds (when
there is ideal separation) are captured by the “system on with
clean speech” condition. The ability to localize talkers in space,
as shown in Figure 6e, was comparable across all the three con-
ditions highlighting retention of the attended talker spatial cues
when the system is turned on. In summary, the system helps fol-
low the conversation of interest, increases its intelligibility and
the ease of attending to it while also preserving spatial cues.

2.8.2. Part B: Objective

In addition to subjective evaluation, we also performed an ob-
jective evaluation where the same system simulated outputs in
the subjective evaluation were compared with their correspond-
ing clean to-be-attended conversation waveforms (as reference)
to calculate narrowband MOS-mapped Perceptual Evaluation of
Speech Quality[38] (PESQ) and Extended Short-Time Objective
Intelligibility[39] (ESTOI) scores. As expected, in Figure 6g,h, we
see a significant improvement in these scores as we progress
from “system off” condition to “system on with separated speech”
condition to “system on with clean speech” condition (two-sided
paired t-tests, p-val < 0.0001).

3. Discussion

We introduced a novel AAD experimental paradigm that diverges
from existing studies by incorporating concurrent conversations
with natural turn-takings where talkers move in space amidst
background noise. This approach represents a substantial ad-
vancement in creating realistic auditory scenarios for AAD re-
search. Our binaural speaker separation system successfully sep-
arated these dynamic conversations into individual streams while
preserving talker spatial cues. Additionally, the speech separa-
tion system provides real-time talker trajectories to the AAD algo-
rithm, enhancing its decoding accuracy. The use of the repeated
word detection task across the conversations provided a robust
ground truth label for the attended conversation with a high tem-
poral resolution and explained AAD performance on a trial-by-
trial basis. Evaluations of the proposed system revealed improved
tracking of the attended conversation and increased intelligibility
while preserving the perceived location of each talker in space.

The primary aim of this study was to address the limitations
of previous AAD research that predominantly assumed two sta-
tionary talkers,[6,10,11,13,14] thereby restricting the applicability of
such research to real-world scenarios. In realistic acoustic scenes,
we normally listen to simultaneous conversations which can in-
volve multiple talkers. Our research extends previous work by re-
placing concurrent talkers with concurrent conversations involv-
ing natural turn-taking. By introducing a speaker-independent
speech separation model that leverages both spatial and spectro-
temporal information, our research marks a significant step to-
ward creating an immersive listening experience that closely
mimics natural environments. This model not only separates the
speech of moving talkers but also allows listeners to accurately
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Figure 6. Subjective and objective evaluation of system outputs shows enhanced tracking of the cued conversation, improved intelligibility and retention
of talker spatial cues and voice quality. For subjective tests, twenty-four online participants listened to trials from the following conditions: i) System Off:
raw original mixture played to iEEG subjects, ii) System On (Separated): attended talker enhanced with the output of the binaural separation system, iii)
System On (Clean): attended talker enhanced with clean ground truth speech. a) Repeated word detection accuracy in the cued conversation increases
significantly when the system is turned on for both clean as well as separated versions (two-sided paired t-test, p-val < 0.001). b) Repeated word detection
accuracy for the uncued conversation drops significantly when the system is turned on (two-sided paired t-test, p-val < 0.01). c) Intelligibility of the cued
conversation is significantly increased under the system on conditions (two-sided paired t-test, p-val < 0.05) d) Attending to the cued conversation is
easier under the system on conditions (two-sided paired t-test, p-val < 0.0001). e) Participants can localize talkers in space equally well in all conditions
(chance = 20%, see Experimental Section). f) No significant difference in voice quality ratings was observed between the system off condition versus the
system on with separated speech condition. However, participants rated the voice quality of the system on with clean speech condition to be relatively
higher (two-sided paired t-test, p-val < 0.05). g and h) Objective evaluation also shows improved quality and intelligibility. Both PESQ and ESTOI scores
increase from “system off” condition to “system on with separated speech” condition to “system on with clean speech” condition (two-sided paired
t-tests, p-val < 0.0001). Error bars in all plots indicate the standard error of mean.

track their locations, an aspect crucial for realistic AAD appli-
cations. An essential contribution of our study is that incorpo-
rating real-time talker trajectories estimated by the speech sep-
aration algorithm in addition to spectro-temporal information
can improve AAD accuracy.[20,40–42] Further research is needed to
distinguish listener motion-induced from talker motion-induced
acoustic change and how it could be encoded differently in the
human auditory cortex.[43,44]

Another contribution of our study is introducing a behavioral
task of repeated word detection across conversations, allowing
us to identify the actual attended conversation with high tempo-
ral resolution. This method addresses a common issue in pre-
vious AAD studies where subjects’ attention could inadvertently
shift to the unattended stream,[23] leading to mislabeled data and
affecting the training and evaluation of AAD models. By incor-
porating a behavioral measure into our experiment design, we

have enhanced the accuracy of determining the attended talker
or conversation. In future AAD studies with moving talkers, a
higher degree of temporal resolution can be achieved by asking
the subjects also to report the spatial trajectory of the conversa-
tion followed. Additionally, further research is needed to investi-
gate the difference between endogenous and exogenous auditory
attention switches and how they may be decoded differently.[45]

While our study focused on neural activity in the high gamma
band, incorporating low-frequency neural activity, which has
been shown to track motion and attention, could improve AAD
accuracies. Prior invasive[46] and non-invasive[13,47] AAD studies
have shown signatures of auditory attention (via tracking of
the envelope of the attended speech) in the lower frequencies
(1–7 Hz). A recent study[22] also showed that low-frequency
neural activity also tracks the location of the attended talker,
especially in delta (<2 Hz) phase and alpha (8–12 Hz) power.
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Including low-frequency neural signals might provide a more
comprehensive understanding of the neural underpinning of au-
ditory attention and enhance the performance of AAD systems.

A critical aspect of future research should involve transitioning
to a real-time, closed-loop system. This requires the integration of
speech separation and AAD components to work synchronously
in a causal, real-time manner. Furthermore, determining how to
optimally manipulate the acoustic scene based on the decoded
attended talker remains an area for further investigation. Such
acoustic modifications should help the listener follow the at-
tended conversation while still maintaining the ability to switch
to the unattended one. Our experiment design could be further
aligned with real-world scenarios by introducing more complex
motion patterns for talkers, such as radial motion and motion
pauses. This would add a layer of complexity to the auditory
scene, presenting conversations with time-varying power and po-
tentially challenging the current speaker separation model. Ad-
dressing this challenge may involve retraining or fine-tuning the
model on datasets with these characteristics.

A brain-controlled hearing device that can quickly and ac-
curately adapt to changes in the listener’s attention is a chal-
lenge that may be more effectively addressed with invasive neu-
ral recording techniques. However, a critique of our approach is
the reliance on invasive neural recordings which might be per-
ceived as less accessible. Considering the rapid advancements in
speech BCI research involving invasive neural recordings,[48–52]

these methods are becoming increasingly common and feasible.
The precision and speed offered by invasive recordings are cur-
rently unmatched by non-invasive techniques, making them es-
sential for exploring the upper limits of AAD performance. While
future research continues to explore less invasive or alternative
neural recording methods, our current focus on invasive record-
ings is crucial for advancing the field and setting benchmarks
for performance of these systems and establishing minimum re-
quired performance for listeners to prefer AAD functionality.

Our study contributes significantly to AAD research and brain-
controlled hearing devices by introducing more realistic experi-
mental paradigms and advancing the technology toward practical
applications. The insights from this research enhance our under-
standing of auditory attention in complex environments and pave
the way for future innovations in assistive hearing technologies.

4. Experimental Section
Participants: The study had a total of three human participants of

which two (Subjects 1 and 2) were from North Shore University Hospital
(NSUH) and one (Subject 3) was from Columbia University Irving Med-
ical Center (CUIMC). All participants were undergoing clinical treatment
for epilepsy. Subjects 1 and 2 were both implanted with subdural elec-
trocorticography (ECoG) grid and stereo-electroencephalography (sEEG)
depth electrodes on their left-brain hemispheres. Subject 3 only had sEEG
depth electrodes implanted over their left-brain hemisphere. The electrode
targets for these participants were determined purely based on clinical re-
quirements. The participants provided informed consent as per the lo-
cal Institutional Review Board (IRB) regulations. IRB protocol number:
AAAD5482 (M00Y18)

Neural Data Pre-Processing + Hardware: The neural data of partici-
pants from NSUH (Subjects 1 and 2) were recorded using Tucker-Davis
Technologies (TDT) hardware using a sampling rate of 1526 Hz. The neu-
ral data of the participant from CUIMC (Subject 3) was recorded using Na-
tus Quantum hardware using a sampling rate of 1024 Hz. Left and right

channels of the audio stimuli played to the participants were also recorded
in sync with neural signals to facilitate segmenting of neural data into trials
for further offline analysis.

Neural data was pre-processed and analyzed using MATLAB software
(MathWorks). All neural data was first resampled to 1000 Hz and then
montaged to a common average reference to reduce recording noise.[53]

The neural data was then further downsampled to 400 Hz. Line noise at
60 Hz and its harmonics (up to 180 Hz) were removed using a notch filter.
The notch filter was designed using MATLAB’s fir2 function and applied
using filtfilt with an order of 1000. In order to extract the envelope of the
high gamma band (70 – 150 Hz), the neural data was first filtered with
a bank of eight filters, each with a width of 10 Hz, spaced consecutively
between 70 and 150 Hz.[54] The envelopes of the outputs of these filters
were obtained by computing the absolute value of their Hilbert transform.
The final envelope of the high gamma band was obtained by computing
the mean of the individual envelopes yielded by the eight filters and further
downsampling to 100 Hz.

Speech responsive electrodes were determined by comparing neural
samples (of the high gamma envelope sampled at 100 Hz) recorded in re-
sponse to speech with those recorded in response to silence. For each trial,
25 samples corresponding to silence were randomly chosen in a [t = −0.4
to−0.1 s] window, with t= 0 s being the onset of speech. Similarly, 25 sam-
ples corresponding to speech were drawn from a window [t = 0.1 to 1.6 s].
These samples were accumulated across trials and a t-statistic (between
speech and silence samples) was computed for every electrode. Electrodes
with a t-statistic above 5 were considered to be speech-responsive and re-
tained for further analysis.

Stimuli Design and Experiment: The experiment consisted of 28 multi-
talker trials with a mean trial duration of 44.2 s (SD = 2.0 s). The total
experiment lasted 26 min. Every trial consisted of two concurrent and
independent conversations (one to-be-attended, one to-be-ignored) that
were spatially separated and continuously moving in the presence of di-
otic background noise. The to-be-ignored conversation started 3 s later
than the to-be-attended conversation. The participants were cued to at-
tend to the conversation that started first.

A total of eight native American English voice actors (four male, four
female) were recruited to voice these conversations. These conversations
were based on general daily life situations (see Table S1, Supporting Infor-
mation for conversation transcripts). Every trial consisted of four talkers:
two for the to-be-attended conversation (say A and B), two for the to-be-
unattended conversation (say C and D). The to-be-attended conversation
had one turn-taking (talker switch) at the 50% trial time mark whereas the
to-be-ignored conversation had two turn-takings: one at the 25% trial time
mark and the other at the 75% trial time mark. Thus, the talker in the to-
be-attended conversation would transition from A to B and the talker in
the to-be-ignored conversation would transition from C to D to back to C.

To check to which conversation a participant might be attending, re-
peated words were artificially inserted in both the to-be-attended and the
to-be-ignored conversations. Participants were asked to press a button
upon hearing a repeated word in the conversation that they were following.
The conversation transcripts were force aligned with the audio recordings
of the voice actors using the Montreal Forced Aligner tool.[55] The repeated
words were inserted in the conversations based on the following criteria:

• The number of repeated words to be inserted in a conversation of a
trial was determined by dividing the trial duration (in seconds) by 7
and rounding the result.

• For every trial, an equal number of repeated words were inserted in the
to-be-attended and the to-be-ignored conversations.

• A word could be repeated only if its duration was at least 300 ms.
• To make repeated words sound smooth and natural, a Hanning window

of 30 ms was applied to both sides of the audio segment corresponding
to the repeated word.

• The audio segment corresponding to a repeated word was also prefixed
and postfixed with 200 ms of silence.

• The time interval between the onsets of two repeated words in a con-
versation was constrained to lie between 5.5 to 9.5 s.

Adv. Sci. 2024, 11, 2401379 2401379 (10 of 14) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

• There was always one repeated word whose onset was within 1.5 s post
talker switch in the to-be-attended conversation. This was done to check
if participants tracked the switch in talkers in the to-be-attended conver-
sation.

• The onset of the first repeated word in a trial was constrained to lie be-
tween 5 – 8 s from trial start time. This first repeated word could occur
either in the to-be-attended conversation or the to-be-ignored conver-
sation.

• The minimum time gap between a repeated word onset in the to-be-
attended conversation and a repeated word onset in the to-be-ignored
conversation was set to be at least 2.5 s. This was done to prevent si-
multaneous overlap of repeated words in the two conversations and to
allow for determining to which conversation a participant was attending
to.

Google Resonance Audio software development kit (SDK) was used to
spatialize the audio streams of the conversations.[56] The trajectories for
these conversations were designed based on the following criteria:

• The trajectories were confined to the frontal half of the horizontal plane
of the subject in a semi-circular fashion. In other words, the conversa-
tions were made to move on a semi-circular path at a fixed distance
from the subject spanning −90 degrees (right) to +90 degrees (left).

• The trajectories were initially generated with a resolution of 1 degree
and a sampling rate of 0.5 Hz using a first order Markov chain.

• This Markov chain had 181 states (−90 degrees to +90 degrees with
a resolution of 1 degree). All states were equally probably of being the
initial state.

• The subsequent samples of a trajectory were generated with a probabil-
ity transition matrix shown in Figure S3 (Supporting Information).

• The resulting trajectories were smoothed with a moving average of five
samples and then stretched to span the whole frontal half plane.

• The trajectories were further upsampled using linear interpolation to
10 Hz.

• A pair of trajectories corresponding to a pair of conversations in a trial
also followed the following criteria:
• The spatial separation between the conversations when the second

conversation starts was set to be at least 90 degrees.
• The spatial separation between the conversations during the talker

switch in the to-be-attended conversation was ensured to be at least
45 degrees.

• The correlation of the two trajectories were ensured to be less than
0.5.

• A total of 1000 trajectory sets (each with 28 pairs, one for each of the
28 trials) were generated based on the above criteria.

• To have the trajectories span a uniform joint distribution, the set with
the highest joint entropy (computed with a bin size of 20 degrees) was
chosen as final.

In addition to the two conversation streams, a single channel back-
ground noise was duplicated for both left and right channels introduced in
the auditory scene. For every trial, the background noise was either pedes-
trian noise[26] or speech babble noise.[27] When mixing the three streams
the power of the two conversation streams were always kept the same.
The power of the background noise stream was suppressed relative to the
power of a conversation stream by either 9 or 12 dB. Trial parameters such
as background noise type, its power level and voice actor assignments
were all counterbalanced across the trials. Stimuli was delivered to the
participants with a sampling rate of 44.1 kHz through stereo earphones
(Panasonic RP-HJE120).

Speaker-Independent Binaural Speech Separation—Cross-Domain Fea-
tures: Although the encoder outputs EL and ER contain both spectral and
spatial information, we added interaural phase difference (IPD) and in-
teraural level difference (ILD) as additional features to increase speaker
distinction when speakers are at different locations.[57,58] Specifically, we
calculated cos(IPD), sin(IPD) and ILD ∈ ℝF×H

cos (IPD) = cos
(
∠YL − ∠YR) (2)

sin (IPD) = sin
(
∠YL − ∠YR) (3)

ILD = 10 log10

(|||YL|||⊘ |||YR|||
)

(4)

where YL, YR ∈ ℝF×H are the STFT output of yL, yR, respectively, F is the
number of frequency bins, and ⊘ is element-wise division operation. The
hop size for calculating YL and YR is the same as that for EL and ER to en-
sure they have the same number of time frames, even though the window
length in the encoder is typically much shorter than that in the STFT. Fi-
nally, we concatenated these cross-domain features into[EL, ER, cos(IPD),
sin(IPD), ILD]∈ ℝ(2N+3F)×H as the input to the binaural speech separation
module.

Speaker-Independent Binaural Speech Separation—Training and Develop-
ment Datasets: For the training and development sets, 24000 and 2400
9.6-second binaural audio mixtures were generated, respectively. Each
mixture comprised of two moving speakers and one diotic background
noise. The moving speech stimuli were created using the methods de-
scribed in the Stimuli Design and Experiment section. Speech was ran-
domly sampled from the Librispeech dataset.[59] For half of the training
data, pairs of trajectories that spanned uniform distribution (quantified by
joint entropy) were chosen; and for another half of the training data, pairs
of trajectories whose average azimuthal difference was smaller than 15
degrees were chosen to enhance the separation model’s ability to handle
closely spaced moving speakers. Noise was randomly chosen from DE-
MAND dataset.[60] The SNR, defined as the ratio of the speech mixture in
the left channel to the noise, ranged from −2.5 to 15 dB. All sounds were
resampled to 16 kHz. The model was speaker-independent as the speakers
involved in the testing phase (the voice actors) were not part of the train-
ing dataset (Librispeech), ensuring the generalizability and applicability of
this system across diverse speakers.

Speaker-Independent Binaural Speech Separation—Network Architecture
and Training: The binaural separation, post-enhancement, and localizer
modules were all designed with a causal configuration of TasNet. For the
linear encoder and decoder, we used 96 filters with a 4 ms filter length
(equivalent to 64 samples at 16 kHz) and 2 ms hop size. Five repeated
stacks witch each having seven 1-D convolutional blocks in the TCN mod-
ule were used, resulting in an effective receptive field of ≈2.5 s. When cal-
culating cos(IPD), sin(IPD), and ILD, the STFT window size was set to
32 ms and the window shift was set to 2 ms. The binaural separation, post-
enhancement, and localizer modules were trained separately. The training
batch size was set to 128. Adam[61] was used as the optimizer with an ini-
tial learning rate of 1e−3, which was decayed by 0.98 for every two epochs.
Each module was trained for 100 epochs.

Canonical Correlation Analysis: Canonical correlation analysis (CCA)
was used to determine the attended talker. From the stimuli side, the
inputs involved talker spectrograms and trajectories. A 20-bin mel spec-
trogram representation obtained with a window duration of 30 ms and a
hop size of 10 ms was chose. Audio was downsampled to 16 kHz before
mel spectrogram extraction. The mel spectrograms of left and right chan-
nels were concatenated along the bin dimension. All trajectories were up-
sampled to 100 Hz from 10 Hz to match the sampling rate of the neural
data. Trajectories were pooled across all trials and normalized. Spectro-
grams were also normalized on a bin-by-bin basis. A receptive field size
of 500 ms for neural data and 200 ms for stimuli spectrograms and tra-
jectories were chosen to maximize the correlation between phonemes in
continuous speech and their evoked neural responses.[35–37] The starting
sample of these receptive fields were aligned in time. Time-lagged matri-
ces were then generated individually for neural data, trajectory and spec-
trograms.

As done in a previous study,[28] principal component analysis (PCA)
was applied individually to time-lagged versions of both spectrogram and
trajectory. PCA was also applied to the time-lagged neural data matrix. The
top PCA components explaining at least 95% of the variance were retained.
This was done to reduce the risk of overfitting in CCA.

CCA filters were trained to project PCA-reduced versions of the attended
stimuli and neural data to maximize their correlation. During inference, the
trained filters were used to generate correlations for each talker. Attended
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talker was decided based on voting by the preferences indicated by the first
three canonical correlations.

Correction for behavior: For trials in which two or more repeated words
were detected in the uncued conversation, the corresponding portions
(bounded by button press timings) of the cued to-be-attended and un-
cued to-be-unattended stimuli were swapped before model training and
evaluation. For models trained without correction, no such swapping was
done based on behavior.

Enhancement of Attended Conversation: In the System Off setting, the
mixture stimuli y has three streams, namely, the two conversations s1, s2
and a background noise n.

y = s1 + s2 + n (5)

The binaural speech separation module yields the estimates of the sep-
arated speech ŝ1, ŝ2 from the mixture y. When editing the scene to en-
hance the attended conversation, the mixture was attenuated and the sep-
arated speech was added as per the following equations.

ynew = ky + 𝛼1 ŝ1 + 𝛼2 ŝ2 (6)

If ŝ1 ≈ s1, ŝ2 ≈ s2, then we have the following.

ynew ≈ (k + 𝛼1) s1 + (k + 𝛼2) s2 + n (7)

In this enhanced mixture, it was ensured that the un-attended talker
was attenuated by 9 dB below the attended talker. It was also ensured that
the power of the attended talker was the same as that in the original mix-
ture. The attended conversation was determined by canonical correlation
analysis (CCA) which uses the iEEG signals and the results of the binaural
speech separation. If Conversation 1 was determined to be the attended
conversation, the following three equations solved to determine the gain
factors k, 𝛼1,𝛼2 for generating the enhanced mixture.

20 log10
k + 𝛼1

k + 𝛼2
= 9 dB (8)

k + 𝛼1 = 1 (9)

𝛼2 = 0 (10)

For generating the enhanced mixtures for the System On (Separated)
case, the estimates of the separated speech ŝ1, ŝ2 were used. For generat-
ing enhanced mixtures for the System On (Clean) case, the original speech
streams s1,s2 were used.

Psychoacoustic Experiment: The online psychoacoustic experiment to
evaluate system performance was conducted with 24 normal hearing (self-
reported) Amazon MTurk participants. These participants were native
speakers of American English based in the US. The experiment lasted for
a total of 30 min per participant and each participant was paid $10. All
participants were required to wear stereo earphones.

During the experiment, participants listened to trials and answered
questions after each trial. The task assigned to the participants during
the trial was the same as that of the participants from whom neural data
was recorded: to attend to/follow the cued conversation (conversation that
starts first) and press spacebar upon hearing a repeated word in the con-
versation being followed. jsPsych[62] was used to design this web-based
experiment.

Every participant listened to a total of 15 trials, 5 trials from each of the
following conditions: System On (Clean), System On (Separated) and Sys-
tem Off. Neural data was combined from all the three subjects along the
channel dimension to test the system. Since a few subjects could have
been paying attention to the uncued (to-be-unattended) stream in any
given trial, to prevent combining neural signatures across subjects when
the subjects were attending to different streams, trials in which at least
one of the subjects had mistakenly attended (tracked at least two or more
repeated words) to the uncued (to-be-unattended) stream were discarded.

This resulted in 18 trials. For every MTurk participant, the selection of 15
trials from these 18 trials and their corresponding condition assignment
(SysOn-Clean, SysOn-Sep, Sys Off) were randomized. The order of pre-
sentation of these trials were also randomized with the constraint that the
first two trials had to be those with Sys Off condition. Throughout the ex-
periment, the participants were unaware of the conditions assigned to the
trials.

After every trial, the participants were prompted with the following four
questions:

1) Comprehension: A multiple-choice question based on the content in
the to-be-attended conversation with a single correct answer.

2) Difficulty: Participants were asked to rate how difficult or easy it was
for them to follow the cued conversation on a scale from 1 to 5 (1 =
very difficult, 2 = difficult, 3 = neutral, 4 = easy, 5 = very easy).

3) Sound Localization: The last three seconds of the trial was allowed
to be replayed multiple times by the participants. Participants were
asked to indicate from one of five equally partitioned sectors of the
frontal half plane (left, front left, center, front right, right) where the
cued conversation ended.

4) Voice Quality: Participants were also asked to rate the quality of voices
in the cued conversation on a scale from 1 to 5 (1 = bad, 2 = poor, 3
= fair, 4 = good, 5 = excellent).

Statistical Analysis: Pre-processing of data is described in their respec-
tive sections. In all the figures, error bars represent the standard error of
the mean, unless specified otherwise. The details of statistical methods
used such as the type of test, p-values, degrees of freedom, etc. are men-
tioned inline in the main text. All statistical analysis was carried out on
MATLAB (MathWorks) R2023a. P-values greater than 0.05 are indicated
as not significant (N.S). P-values between 1e-2 and 0.05 are indicated with
*. P-values between 1e-3 and 1e-2 are indicated with **. P-values between
1e-4 and 1e-3 are indicated with ***. P-values less than 1e-4 are indicated
with ****.
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